Adaptive lenticular lens array using a hybrid liquid crystal–carbon nanotube nanophotonic device
نویسندگان
چکیده
منابع مشابه
Optical phase modulation using a hybrid carbon nanotube-liquid-crystal nanophotonic device.
The carbon nanotube-liquid-crystal (CNT-LC) nanophotonic device is a class of device based on the hybrid combination of a sparse array of multiwall carbon nanotube electrodes grown on a silicon surface in a liquid-crystal cell. The multiwall carbon nanotubes act as individual electrode sites that spawn an electric-field profile, dictating the refractive index profile within the liquid crystal a...
متن کاملAdaptive dielectric liquid lens.
A tunable-focus liquid lens using dielectrophoretic effect is demonstrated. When a voltage is applied to a dielectric liquid droplet, the generated electric field inside the droplet is inhomogeneous. As a result, the liquid bears a dielectric force and its surface profile can be reshaped which causes the focal length to change. Adaptive lenses with different apertures are fabricated and their p...
متن کاملA nanophotonic solar thermophotovoltaic device.
The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small...
متن کاملAdaptive liquid Filled Membrane Lens
Adaptive optics control using liquid filled membrane lens is based on the principle of deflection of polymeric membrane. Controlled deflection in membrane leads to controlled focal length. This enhances the focus tuning ability of the system at the same time make optical system compact and economical. The adjustment of fluid pressure helps to toggle between different field of view at the same t...
متن کاملMotion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.
To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optical Engineering
سال: 2011
ISSN: 0091-3286
DOI: 10.1117/1.3582172